
ECE 364: Programming Methods for Machine Learning,
Spring 2025

Midterm 1 Sample

• You will have 75 minutes (1.25 hours) to solve all the problems. Most have
multiple parts. Don’t spend too much time on questions you don’t understand and focus
on answering as much as you can!

• BUDGET YOUR TIME WISELY . I highly recommend working on the questions you
know first and the questions you need to think about second.

• No resources are allowed for use during the exam except a cheatsheet and scratch paper on
the back of the exam. Do not tear out the cheatsheet or the scratch paper! It messes
with the auto-scanner.

• You should write your answers completely in the space given for the question. We will not
grade parts of any answer written outside of the designated space.

• Please use a dark-colored pen unless you are absolutely sure your pencil writing is forceful
enough to be legible when scanned. We reserve the right to take off points if we have difficulty
reading the uploaded document.

• Don’t cheat. C’mon, be cool, be honest.

• Good luck!

Name:

NetID:

Date:

1. Tensor manipulations (4 points)
For each of the code segments, answer the following questions.

(a)1 import torch

2 a = torch.tensor ([[0,1,2,3],[4,5,6,7],[8,9,10,11]])

3 b = a[0::2 , ::5]

4 d = a>4

5 c = a[d]

i. (1 point) What will be the shape of b?

Solution:
[2, 1] vector

ii. (1 point) What does c contain?

Solution:
[5, 6, 7, 8, 9, 10, 11]

(b)1 import torch

2 a = torch.tensor ([[0,1,2,3],[4,5,6,7],[8,9,10,11]])

3 e = a.clone().view ([6,-1])

4 f = torch.tensor ([0,1,0])

5 l = a.multiply_(f.unsqueeze (-1))

i. (1 point) What does e contain?

Solution: 

0 1

2 3

4 5

6 7

8 9

10 11


Something

ii. (1 point) What does a contain?

Solution: 0 0 0 0

4 5 6 7

0 0 0 0



Total for Question 1: 8

Page 2

2. Striding along (1 point)
Consider the following code segment:

1 import torch

2 a = torch.arange (1000).view (10 ,10 ,10)

3 b = ?

Slice up a in a way that will cause b to have a separate data space from a.

Solution:

A lot of potential solutions here but you basically just got to make sure the computer can
think of a size and stride scheme to index the data from a. Grabbing slices randomly works
well enough:

b = a[[4, 3, 7, 2, 9], :, :]

3. Matrix Calculus (1 point)
Given:

f(x) = xTATAx

where x ∈ Rn, A ∈ Rn×n

Find the solution to the following partial derivative:

∂f

∂x
=

You must explain why your answer is correct for full credit.

Solution:

Well this is very similar to what we have seen in the homework but instead of A, we have
ATA but the question wants you to show your work so that is what we are going to do:

We want to compute the derivative:

f(x) = xTATAx

Step 1: Express the Function in Summation Form Expanding using summation notation:

f(x) =
∑
i

∑
j

xi(A
TA)ijxj .

Step 2: Compute the Partial Derivative We differentiate f(x) with respect to xk:

∂f

∂xk
=

∑
i

∑
j

∂

∂xk

(
xi(A

TA)ijxj
)
.

Page 3

Since (ATA)ij is a constant coefficient independent of x, we apply the derivative:

∂

∂xk

(
xi(A

TA)ijxj
)
= (ATA)ij

∂

∂xk
(xixj).

Using the derivative of a product of variables:

∂

∂xk
(xixj) =


xj , i = k,

xi, j = k,

0, otherwise.

Thus, substituting back:

∑
j

(ATA)kjxj +
∑
i

(ATA)ikxi.

Since ATA is symmetric ((ATA)kj = (ATA)jk), both sums are equal, and we get:

∂f

∂xk
= 2

∑
j

(ATA)kjxj .

Step 3: Convert Back to Matrix Form Rewriting in matrix notation, we recognize the sum-
mation as the k-th component of ATAx, so:

∇xf = 2ATAx.

Thus, we have proven from first principles that:

d

dx
(xTATAx) = 2ATAx.

Note: this is a bit more difficult than the level of matrix derivative I’ll ask on the exam but
make sure you can do this problem, the HW, and lectures problems easily and you should be
fine for the actual exam.

Page 4

4. Support Vector Machines (1 point)
Support vectors are the critical data points in an SVM that lie closest to the decision boundary.
They determine both the optimal separating boundary and the margin width between classes.
Removing these points from the training set would shift the boundary, potentially altering the
classification results.

Consider a SVM that separates the following 1D points into two classes (−1 and +1) along the
real number line:

x
0 1 2 3 4 5 6 7 8 9 10

−1 −1 −1 +1 +1 +1

With points:

• Class −1: 1, 2, 3

• Class +1: 6, 7, 8

(a) (1 point) Drawing the Boundary: Sketch the decision boundary for an SVM on the
provided number line. Choose the decision boundary that maximizes the margin and
minimizes the loss. Additionally, sketch the margin boundaries for each class (these are
the lines that pass through the closest data points from each class, positioned half a margin
away from the decision boundary). Label each line clearly. You should draw a total of
three lines. Include the approximate equation for each line.

Solution:

Class −1 boundary: vertical line at x = 3. Class +1 boundary: vertical line at x = 6.
Decision boundary: vertical line at x = 3+6

2 = 4.5.

(b) (1 point) Identifying Support Vectors: For each class (−1 and +1) in the provided
data, identify the support vectors and list them below.

Solution:

Class −1: x = 3, Class +1: x = 6.

(c) (1 point) Margin Calculation: Calculate the margin (total width between class bound-
ary lines) for your decision boundary.

Solution:

margin = 2 ∗ |4.5− 3| = 3 or margin = 2 ∗ |6− 4.5| = 3.

Page 5

5. Linear Classification (1 point)
Let g be the logical OR function, defined on the feature space {+1,−1}2, which maps:

• g(+1,+1) = +1

• g(−1,+1) = +1

• g(+1,−1) = +1

• g(−1,−1) = −1.

Given a linear classifier h(x) = sign(w · x + b), where w ∈ R1×2, x ∈ R2×1, and b ∈ R1×1,
give a valid (w, b) pair that matches the ground truth g. Let sign(z) = +1 for z ≥ 0 and −1
otherwise. Give your solution and show that it is valid.

Solution:

Let w =
[
+1 +1

]
and b = +1. Then the (w, b) pair would match the ground truth g for

a linear classifier h(x) = sign(w · x + b). We can check by doing the following calculations,
seeing that this mapping leads to:

h(+1,+1) = sign(
[
+1 +1

]
·

[
+1

+1

]
+ 1) = sign(+3) = +1 = g(+1,+1)

h(−1,+1) = sign(
[
+1 +1

]
·

[
−1

+1

]
+ 1) = sign(+1) = +1 = g(−1,+1)

h(+1,−1) = sign(
[
+1 +1

]
·

[
+1

−1

]
+ 1) = sign(+1) = +1 = g(+1,−1)

h(−1,−1) = sign(
[
+1 +1

]
·

[
−1

−1

]
+ 1) = sign(−1) = −1 = g(−1,−1)

and matches the mapping of g where g is the logical OR function defined on the feature space
{+1,−1}2.

Page 6

6. Gradient Descent (15 points)
Consider the following function

f(x, y) =
1

1 + ex−y

(a) Determine the gradient ∇f(x, y).

Solution:
df

dx
=

−ex−y

(1 + ex−y)2
= f (x, y) · (f (x, y)− 1)

df

dy
=

ex−y

(1 + ex−y)2
= f (x, y) · (1− f (x, y))

Hence,

∇f(x, y) =

[
f (x, y) · (f (x, y)− 1)

f (x, y) · (1− f (x, y))

]

(b) Let the starting point for gradient descent at k = 0 be
(
x(0), y(0)

)
= (0, 0) and the step

size be α = 4. Apply gradient descent to obtain the values of x and y iterations k = 1 and
2.

Solution:

Gradient descent update can be written as(
x(k), y(k)

)
=

(
x(k−1), y(k−1)

)
− α∇f (x, y) |(x(k−1),y(k−1))

At k = 1, we have

f(0, 0) =
1

2

∇f(x, y)|(0,0) =
[
−1

4
1
4

]T
(
x(1), y(1)

)
=

[
0

0

]
− 4

[
−1

4
1
4

]
=

[
1

−1

]

At k = 2, we have

f(1,−1) =
1

1 + e2

∇f(x, y)|(1,1) =
[

−e2

1+e2
e2

1+e2

]T
(
x(2), y(2)

)
=

[
1

−1

]
− 4

[
−e2

1+e2

e2

1+e2

]
=

[
1+4e2

1+e2

−1+4e2

1+e2

]

Page 7

7. Dataloaders and Optimizers (20 points)

(a) Consider a dataset of type torch.utils.data.Dataset named my dataset. We want to
create two separate dataloaders for the training and validation sets of the dataset. Each
batch must have 64 examples. The validation set is created by randomly selecting 512
examples from the dataset, and the remaining examples are used for training. Complete
the below function to implement the dataloaders.

1 # Even though you should not need to import anything else , feel

2 # free to do so.

3 import random

4 import torch.utils.data import DataLoader , SubsetRandomSampler

5

6 def split_dataset(my_dataset):

7 # complete this function

8 train_loader = None

9 val_loader = None

10 return train_loader , val_loader

Solution:

1 import random

2 import torch.utils.data import DataLoader , SequentialSampler

3

4 def split_dataset(my_dataset):

5 # Step 1: Select 512 random indices for validation set

6 val_indices = random.sample(range(len(my_dataset)), 512)

7 # Step 2: Use the remaining indices for training set

8 train_indices = set(range(len(my_dataset))) - set(val_indices)

9 # Step 3: Create samplers

10 train_sampler = SubsetRandomSampler(train_indices)

11 val_sampler = SubsetRandomSampler(val_indices)

12 # Step 4: Create dataloaders

13 train_loader = DataLoader(

14 dataset=my_dataset ,

15 batch_size =64,

16 sampler=train_sampler ,

17)

18 val_loader = DataLoader(

19 dataset=my_dataset ,

20 batch_size =64,

21 sampler=val_sampler ,

22)

23 return train_loader , val_loader

Page 8

(b) We aim to train Model using SimpleDataset. The dataloaders provide a dictionary con-
taining the input and target, where the input has a shape of B ×M and the target has a
shape of N . The Model expects an input of shape B×M and produces an output of shape
B. Here, B and M correspond to the batch size and the number of features, respectively.
We will optimize the model using stochastic gradient descent (SGD) with a learning rate of
0.01 and a momentum of 0.9 and will use mean squared error loss. Complete the following
code snippet.

1 import torch

2 from lib.model import Model

3 from lib.data import SimpleDataset

4

5 model = Model()

6 dataset = SimpleDataset ()

7 train_loader , _ = split_dataset(dataset)

8 criterion = # Complete this

9 optim = # Complete this

10

11 for epoch in range (10):

12 for batch in train_loader:

13 inp , tgt = batch["input"], batch["target"]

14 # Complete this

Solution:

1 import torch

2 from lib.model import Model

3 from lib.data import SimpleDataset

4

5 model = Model()

6 dataset = SimpleDataset ()

7 train_loader , _ = split_dataset(dataset)

8 criterion = nn.MSELoss ()

9 optim = torch.optim.SGD(model.parameters (), lr=0.01 , momentum =0.9)

10

11 for epoch in range (10):

12 for batch in train_loader:

13 inp , tgt = batch["input"], batch["target"]

14 optim.zero_grad ()

15 output = model(inp)

16 loss = criterion(output , tgt)

17 loss.backward ()

18 optim.step()

Page 9

8. Computational Graph (15 points)

x w1

w3

w4

y w2 w5

w6

w7

w8 f(x, y)

w1

w1

w2

ew1

ln(w1 + 1)

sin(w2)

w3 + 2 + w2
4

cos(w5)

4w2
6 + 5

√
w7 + 3

(a) Determine the function f(x, y) represented by the above computational graph.

Solution:

w1 = x, w2 = y,

w3 = ew1 = ex,

w4 = ln(w1 + 1) = ln(x+ 1),

w5 = sin(w2) = sin(y),

w6 = w3 + 2 + w2
4 = ex + 2 +

[
ln(x+ 1)

]2
,

w7 = cos(w5) = cos(sin(y)),

f(x, y) = w8 = 4w2
6 + 5

√
w7 + 3 = 4 ∗

(
ex + 2 + [ln (x+ 1)]2

)2
+ 5

√
cos (sin (y)) + 3

(b) Compute the partial derivatives of each successor node with respect to its predecessors.

Solution:

∂w6

∂w3
= 1

∂w6

∂w4
= 2w4

∂w7

∂w5
= − sin(w5)

∂w5

∂w2
= cos(w2)

∂w8

∂w6
= 8w6

∂w8

∂w7
=

5

2
√
w7 + 3

∂w3

∂w1
= ew1

∂w4

∂w1
=

1

w1 + 1

Page 10

(c) Compute the adjoints at each node w̄i =
∂f
∂wi

.

Solution:

w̄8 = 1

w̄6 = w̄8
∂w8

∂w6
= 8w6

w̄7 = w̄8
∂w8

∂w7
=

5

2
√
w7 + 3

w̄5 = w̄7
∂w7

∂w5
= − sin(w5) ·

5

2
√
w7 + 3

w̄4 = w̄6
∂w6

∂w4
= 8w6 · 2w4

w̄3 = w̄6
∂w6

∂w3
= 8w6

w̄2 = w̄5
∂w5

∂w2
= − sin(w5)

5

2
√
w7 + 3

cos(w2)

w̄1 = w̄3
∂w3

∂w1
+ w̄4

∂w4

∂w1

= 8w6e
w1 + (16w6w4)

1

w1 + 1

Solution:

We verified the correctness of our solution by using the PyTorch automatic differentiator.
Feel free to play around with the code!

1 import torch

2 import numpy as np

3

4 x = torch.tensor ([1.5] , requires_grad=True) # make sure gradients are

computed when backpropagation is called

5 y = torch.tensor ([np.pi/3], requires_grad=True)

6

7 w1 = x

8 w2 = y

9 w3 = torch.exp(w1)

10 w4 = torch.log(w1+1)

11 w5 = torch.sin(w2)

12 w6 = w3 + 2 + w4**2

13 w7 = torch.cos(w5)

14 w8=4*(w6**2) + 5*torch.sqrt(w7+3)

15 f = w8

16

17 # manual gradients

18 with torch.no_grad ():

19 # adjoints

20 w8bar = 1

21 w7bar = 5/(2* torch.sqrt(w7+3))

22 w6bar = 8*w6

23 w5bar = -1*torch.sin(w5)*5/(2* torch.sqrt(w7+3))

24 w4bar = 8*w6*2*w4

Page 11

25 w3bar = 8*w6

26 w2bar = -1*torch.sin(w5)*5/(2* torch.sqrt(w7+3))*torch.cos(w2)

27 w1bar = 8*w6*torch.exp(w1) + (16*w6*w4)/(w1+1)

28

29 # automatic gradients via backpropagation

30 w3.retain_grad (), w4.retain_grad (), w5.retain_grad (), w6.retain_grad ()

, w7.retain_grad (), w8.retain_grad () # making sure PyTorch populates

all gradients

31 f.backward () # initiate backpropagation from f as the seed node

32

33 print("Making sure the overall equation is correct: ")

34 f_manual = 4*(torch.exp(x)+2+(torch.log(x+1))**2) **2 + 5*torch.sqrt(

torch.cos(torch.sin(y))+3)

35 print(’f: Manual = {}, PyTorch = {}’.format(f_manual , f))

36

37 print(’Comparing our calculations to PyTorch Autograd:’)

38 print(’w1: Manual = {}, PyTorch = {}’.format(w1bar , w1.grad))

39 print(’w2: Manual = {}, PyTorch = {}’.format(w2bar , w2.grad))

40 print(’w3: Manual = {}, PyTorch = {}’.format(w3bar , w3.grad))

41 print(’w4: Manual = {}, PyTorch = {}’.format(w4bar , w4.grad))

42 print(’w5: Manual = {}, PyTorch = {}’.format(w5bar , w5.grad))

43 print(’w6: Manual = {}, PyTorch = {}’.format(w6bar , w6.grad))

44 print(’w7: Manual = {}, PyTorch = {}’.format(w7bar , w7.grad))

45 print(’w8: Manual = {}, PyTorch = {}’.format(w8bar , w8.grad))

46

Page 12

