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ECE 364: Programming Methods for Machine Learning,
Spring 2025

Midterm 1 – March 11, 2025

• You will have 75 minutes (1.25 hours) to solve all the problems. Most have
multiple parts. Don’t spend too much time on questions you don’t understand and focus
on answering as much as you can!

• BUDGET YOUR TIME WISELY . I highly recommend working on the questions you
know first and the questions you need to think about second.

• No resources are allowed for use during the exam except a cheatsheet and scratch paper on
the back of the exam. Do not tear out the cheatsheet or the scratch paper! It messes
with the auto-scanner.

• You should write your answers completely in the space given for the question. We will not
grade parts of any answer written outside of the designated space.

• Please use a dark-colored pen unless you are absolutely sure your pencil writing is forceful
enough to be legible when scanned. We reserve the right to take off points if we have difficulty
reading the uploaded document.

• Don’t cheat. C’mon, be cool, be honest.

• Good luck!
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1. Lost in the Layers: Navigating Data Slices (24 points)
For each of the code segments, answer the following questions based on the final state of the
variables.

(a)1 import torch

2 a = torch.tensor ([[0 ,1 ,2] ,[3 ,4 ,5] ,[6 ,7 ,8] ,[9 ,10 ,11]])

3 b = torch.arange (3).view (1,3)

4 c = a*b

5 c += 1

i. What will be the shape of c?

Solution:
4× 3 (4 rows by 3 columns)

ii. What does b contain (note dimension in addition to value)?

Solution:
[[0, 1, 2]]

(b)1 import torch

2 d = torch.arange (100).view (10 ,10) #arange(N) gives int vector [0...N-1]

3 e = d[0:2, 1:6:4]

4 f = e[0,:]

5 g = f.add_ (1) [:2]

6 h = g.t() @ g

i. What is the value of h?

Solution:
40

ii. What does e contain?

Solution: [
2 6

11 15

]
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2. Feeling out of place (5 points)
Suppose we want to find the value of x where ln(x2) = 3. We write the following gradient
descent code to find the issue:

1 x_gd = torch.tensor (6.0, requires_grad=True)

2 target =3

3 alpha = 0.001

4 epochs = 20000

5 for i in range(epochs):

6 f = torch.log(torch.pow(x_gd ,2))

7 loss = (target -f)**2

8 loss.backward ()

9 with torch.no_grad ():

10 x gd = x gd - alpha*x gd.grad

11 x_gd.grad = None

...but there’s an error! After much debugging, you narrow the issue down to the highlighted
line above. What do you need to change this line to, so that the gradient descent code can
work appropriately?

Solution:

The issue is that you are not doing an in-place operation, so after the first iteration, you
are basically just generating a new tensor which defaults to requires_grad=False and hence,
the next time you try to calculate loss.backward(), an error gets thrown because there are no
gradients to compute. You need to change the line to x_gd -= alpha*w_gd which is an in-place
operation and thus the tensor is preserved with the options you declared previously. If you
want, you can play around with the code below:

1

2 import torch

3 import numpy as np

4 import matplotlib.pyplot as plt

5

6 x_vals = []

7 f_vals = []

8 x_gd = torch.tensor (6.0, requires_grad=True)

9 target =3

10 alpha = 0.001

11 epochs = 20000

12 for i in range(epochs):

13 f = torch.log(torch.pow(x_gd ,2))

14 loss = (target -f)**2

15 loss.backward ()

16 with torch.no_grad ():

17 x_gd -= alpha*x_gd.grad

18 #x_gd = x_gd - alpha*x_gd.grad

19 x_gd.grad = None

20 x_vals.append(x_gd.data.item())

21 f_vals.append(f.data.item())

22

23 fig , ax1 = plt.subplots ()

24 color = ’tab:red’

25 ax1.set_xlabel(’iterations ’)

26 ax1.set_ylabel(’x values ’, color=color)
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27 ax1.plot(range(epochs), x_vals , color=color)

28 ax1.tick_params(axis=’y’, labelcolor=color)

29

30 ax2 = ax1.twinx() # instantiate a second Axes that shares the same x-axis

31 color = ’tab:blue’

32 ax2.set_ylabel(’f(x)’, color=color) # we already handled the x-label with ax1

33 ax2.plot(range(epochs), f_vals , color=color , linestyle=’--’)

34 ax2.tick_params(axis=’y’, labelcolor=color)

35

36 fig.tight_layout () # otherwise the right y-label is slightly clipped

37 plt.show()

38

39 print(’x = ’ + str(x_gd.data.item()) + ’ when f(x) = ’ + str(target) )

40

3. Jacobians, Hessians, and Why My Brain Hurts (Matrix Calculus) (5 points)
Given:

f(x) = xTx

where x ∈ Rn

Find the solution to the following partial derivative:

∂f

∂x
=

You must explain why your answer is correct for full credit.

Solution:

This is right out of your homework and lecture and so I’m just going to copy the solution
from there:

∂xTx

∂x
= 2x

Think of it this way, the product of a scalar and its transpose is scalar size:

xTx = x20 + x21 + . . .+ x2n = z(x)

so measuring the effect each xi value has on the end sum would yield a vector:[
∂z(x)

∂x0
,
∂z(x)

∂x1
, . . . ,

∂z(x)

∂xn

]
= [2x0, 2x1, . . . 2xn] = 2x
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4. The Art of the SVM Margin (10 points)
Support vectors are the critical data points in an SVM that lie closest to the decision boundary.
They determine both the optimal separating boundary and the margin width between classes.
Removing these points from the training set would shift the boundary, potentially altering the
classification results.

Consider a SVM that separates the following 2D points into two classes (X and O):

x

y

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

×
×

×

×

×

×

◦
◦

◦

◦

◦

◦

With points:

• Class X: {(1, 4), (2, 3), (2, 9), (3, 4), (4, 7), (6, 7)}
• Class O: {(3, 2), (4, 3), (5, 3), (6, 1), (7, 4), (8, 7)}

(a) Drawing the Boundary: Sketch the decision boundary for an SVM on the provided graph.
Choose the decision boundary that maximizes the margin and minimizes the loss. Addi-
tionally, sketch the margin boundaries for each class (these are the lines that pass through
the closest data points from each class, positioned half a margin away from the decision
boundary). Label each line clearly. You should draw a total of three lines. Include the
approximate equation for each line.

Solution:

Class X boundary: line with equation y = x+ 1. Class O boundary: line with equation
y = x− 1. Decision boundary: line with equation y = x.
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(b) Identifying Support Vectors: For each class (X and O) in the provided data, identify the
support vectors and list them below.

Solution:

Class X: {(2, 3), (3, 4), (6, 7)}, Class O: {(3, 2), (4, 3), (8, 7)}.

(c) SVM Loss Function Analysis: Below is the loss function for soft-margin SVM, for a dataset
of the form D := {(xi, yi)}Ni=1 and where xi ∈ Rn and yi ∈ {+1,−1}:

L = min
w,ξ

1

2
∥w∥22 + C

n∑
i=1

ξi

where ξi = max(0, 1− yi ·Wxi)
2. Here 1

2∥w∥
2
2 is the regularization term, and C

∑n
i=1 ξi is

the slack penalty term. Explain briefly (no more than 4 sentences) what would happen if
C is decreased. Include how training and test accuracy might be affected.

Solution:

When C → 0, the penalty for misclassification becomes negligible compared to the regu-
larization term. Consequently, the SVM focuses on maximizing the margin, even if that
means allowing more misclassifications. This results in a wider margin but a decision
boundary that may not classify all training points correctly. Overall, the classifier be-
comes more tolerant of errors, potentially reducing its accuracy on the training data but
possibly increasing generalization (test accuracy) if noise is present.

Solution:

A second answer could be that the model simply minimizes the fitting parameters result-
ing in a flat line with a slope and bias of zero. This would in effect result in a infinite
margin which corresponds to the answer above.
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5. Where to Draw the Line? A Classifier’s Dilemma (10 points)
Let g be the logical IMPLICATION function (A =⇒ B), defined on the feature space
{+1,−1}2, which maps:

• g(+1,+1) = +1

• g(−1,+1) = +1

• g(+1,−1) = −1

• g(−1,−1) = +1.

Given a linear classifier h(x) = sign(w · x + b), where w ∈ R1×2, x ∈ R2×1, and b ∈ R1×1,
give a valid (w, b) pair that matches the ground truth g. Let sign(z) = +1 for z ≥ 0 and −1
otherwise. Give your solution and show that it is valid.

Solution:

Let w =
[
−1 +1

]
and b = +1. Then the (w, b) pair would match the ground truth g for

a linear classifier h(x ) = sign(w · x + b). We can check by doing the following calculations,
seeing that this mapping leads to:

h(+1,+1) = sign(
[
−1 +1

]
·

[
+1

+1

]
+ 1) = sign(+1) = +1 = g(+1,+1)

h(−1,+1) = sign(
[
−1 +1

]
·

[
−1

+1

]
+ 1) = sign(+3) = +1 = g(−1,+1)

h(+1,−1) = sign(
[
−1 +1

]
·

[
+1

−1

]
+ 1) = sign(−1) = −1 = g(+1,−1)

h(−1,−1) = sign(
[
−1 +1

]
·

[
−1

−1

]
+ 1) = sign(+1) = +1 = g(−1,−1)

and matches the mapping of g where g is the logical IMPLICATION function defined on
the feature space {+1,−1}2.
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6. Stumbling Down the Gradient: My Life Story (15 points)
Consider the following function

f(x, y) = −x lnx− y ln y

(a) Determine the gradient ∇f(x, y).

Solution:
df

dx
= −1− lnx

df

dy
= −1− ln y

Hence,

∇f(x, y) =

[
−1− lnx

−1− ln y

]

(b) Let the starting point for gradient descent at k = 0 be
(
x(0), y(0)

)
= (1, 1) and the step

size be α = e− 1. Here, e is Euler’s number. Apply gradient descent to obtain the values
of x and y at iterations k = 1 and k = 2.

Solution:

Gradient descent update can be written as(
x(k), y(k)

)
=

(
x(k−1), y(k−1)

)
− α∇f (x, y) |(x(k−1),y(k−1))

At k = 1, we have

∇f(x, y)|(1,1) =
[
−1 −1

]T
(
x(1), y(1)

)
=

[
1

1

]
− (e− 1)

[
−1

−1

]
=

[
e

e

]

At k = 2, we have

∇f(x, y)|(e,e) =
[
−2 −2

]T
(
x(2), y(2)

)
=

[
e

e

]
− (e− 1)

[
−2

−2

]
=

[
3e− 2

3e− 2

]
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7. torch.nn models, Dataloaders and Optimizers, oh my! (10 points)
Gradient accumulation is a technique that allows training with larger batch sizes by accumulat-
ing gradients over multiple smaller mini-batches before updating model parameters. Normally,
in stochastic gradient descent, we compute gradients using loss.backward(), update param-
eters with optimizer.step(), and reset gradients using optimizer.zero grad().

However, if optimizer.zero grad() is not called after each mini-batch, gradients accumulate
over multiple iterations. This is useful when a large batch size cannot fit into memory. Instead
of processing the full batch at once, we split it into smaller chunks, compute loss.backward()
for each chunk, and update the model only after accumulating gradients from all chunks.

Now, suppose we want to train with a batch size of 128, but our device can only handle a batch
size of 8. Use gradient accumulation to achieve this by completing the code snippet below and
correctly placing loss.backward(), optimizer.step(), and optimizer.zero grad().

You can assume the following:

• batch is a dictionary containing the input and target, where the input has a shape of
B ×M and the target has a shape of B. B and M indicate the batch size and number of
features.

• The Model (model) expects an input of shape B ×M and produces an output of shape
B.
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1 import torch

2 from torch.utils.data import DataLoader

3 from lib.model import Model

4 from lib.data import SimpleDataset

5

6 model = Model()

7 dataset = SimpleDataset ()

8 criterion = nn.MSELoss ()

9 optimizer = torch.optim.SGD(model.parameters (), lr=0.01 , momentum =0.9)

10 # Complete this

11 train_loader =

12

13

14

15 # Complete this

16 num_accumulation_steps =

17

18

19

20 batches_processed = 0

21 optimizer.zero_grad ()

22

23 # Add the missing function calls in the below

24 # training code

25 for epoch in range (10):

26 for batch in train_loader: # Can add code between any of these commands

27

28

29 inp , tgt = batch["input"], batch["target"]

30

31

32 output = model(inp)

33

34

35 loss = criterion(output , tgt)

36

37

38

39 batches_processed += 1

40 if batches_processed % num_accumulation_steps == 0:

41 # one more place to fill in code

42

43

44

45

46

47

48 #end of batch loop

49

50

51

52 #end of epoch loop

Solution:

1 import torch
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2 from lib.model import Model

3 from lib.data import SimpleDataset

4

5 model = Model()

6 dataset = SimpleDataset ()

7 train_loader , _ = split_dataset(dataset)

8 criterion = nn.MSELoss ()

9 optimizer = torch.optim.SGD(model.parameters (), lr=0.01 , momentum =0.9)

10 num_accumulation_steps = 16 # Number of accumulation steps

11

12 batches_processed = 0

13 optimizer.zero_grad ()

14 for epoch in range (10):

15 for batch in train_loader:

16 inp , tgt = batch["input"], batch["target"]

17 output = model(inp)

18 loss = criterion(output , tgt)

19 loss.backward ()

20 batches_processed += 1

21 if batches_processed % num_accumulation_steps == 0:

22 optimizer.step()

23 optimizer.zero_grad ()
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8. The Computational Graph That Ate My Sanity (21 points)

x w1 w2

w3 w4

w5

w6 f(x)
w1

sin(w1)

sin(w1)

sin(w1)

(w2)
3

4w3

ln(w2)

w2 − w4 + w5

(a) Determine the function f(x) represented by the above computational graph.

Solution:

w2 = sin(w1) = sin(x)

w3 = (w2)
3 = sin3(x)

w4 = 4w3 = 4 sin3(x)

w5 = ln(w2) = ln(sin(x))

w6 = w2 − w4 + w5

f(x) = w6 = sin(x)− 4 sin3(x) + ln(sin(x))

(b) Determine the partial derivatives of each successor node with respect to its predecessors,
e.g., ∂w6

∂w5
, ∂w6
∂w4

, ∂w6
∂w2

, etc.

Solution:

∂w6

∂w5
= 1

∂w3

∂w2
= 3w2

2

∂w5

∂w2
=

1

w2

∂w6

∂w4
= −1

∂w2

∂w1
= cos(w1)

∂w4

∂w3
= 4

∂w6

∂w2
= 1− 12 sin2(x) +

1

sin(x)
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(c) Determine the adjoints at each node w̄i =
∂f
∂wi

.

Solution:

w̄6 = 1

w̄5 =
∂f

∂w5
=

∂f

∂w6

∂w6

∂w5
= 1

w̄4 =
∂f

∂w4
= w̄6

∂w6

∂w4
= −1

w̄3 =
∂f

∂w3
= w̄4

∂w4

∂w3
= −4

w̄2 =
∂f

∂w2
= 1− 12w2

2 +
1

w2

w̄1 = w̄2
∂w2

∂w1
= cos(w1)− 12 sin2(w1) cos(w1) +

1

sin(w1)
cos(w1)

Solution:

We verified the solutions via PyTorch. Feel free to check!

1 import torch

2 import numpy as np

3

4 x = torch.tensor ([1.5] , requires_grad=True) # make sure gradients are

computed when backpropagation is called

5 y = torch.tensor ([np.pi/3], requires_grad=True)

6

7 w1 = x

8 w2 = torch.sin(w1)

9 w3 = torch.pow(w2, 3)

10 w4 = 4*w3

11 w5 = torch.log(w2)

12 w6 = w2 - w4 + w5

13 f = w6

14

15 # manual gradients

16 with torch.no_grad ():

17 # adjoints

18 w6bar = 1

19 w5bar = 1

20 w4bar = -1

21 w3bar = -4

22 w2bar = 1 - (12*(w2**2)) + (1/w2)

23 w1bar = torch.cos(w1) - (12*( torch.sin(w1)**2)*torch.cos(w1)) + (1/

torch.sin(w1))*torch.cos(w1)

24

25 # automatic gradients via backpropagation

26 w1.retain_grad (), w2.retain_grad (), w3.retain_grad (), w4.retain_grad (), w5

.retain_grad (), w6.retain_grad () # making sure PyTorch populates all

gradients

27 f.backward () # initiate backpropagation from f as the seed node

28

29 print("Making sure the overall equation is correct: ")

30 f_manual = torch.sin(x) -4*(torch.sin(x)**3)+torch.log(torch.sin(x))
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31 print(’f: Manual = {}, PyTorch = {}’.format(f_manual , f))

32

33 print(’Comparing our calculations to PyTorch Autograd:’)

34 print(’w1: Manual = {}, PyTorch = {}’.format(w1bar , w1.grad))

35 print(’w2: Manual = {}, PyTorch = {}’.format(w2bar , w2.grad))

36 print(’w3: Manual = {}, PyTorch = {}’.format(w3bar , w3.grad))

37 print(’w4: Manual = {}, PyTorch = {}’.format(w4bar , w4.grad))

38 print(’w5: Manual = {}, PyTorch = {}’.format(w5bar , w5.grad))

39 print(’w6: Manual = {}, PyTorch = {}’.format(w6bar , w6.grad))

40
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This page is for additional scratch work!
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PyTorch Cheatsheet - Part 1

Useful activation function and torch.nn.functional
• Linear function: y = WX + b whereW andX are vectors of sizeN (number of dimensions to the input).

torch.nn.Linear(in_features , out_features , bias=True , device=None , dtype=None)

• Sigmoid function: 1

1+e−z where z is the logit(s).

torch.nn.functional.sigmoid(input)

• Softmax function: p(Y = t|x) =
exp(wT

t x)
∑

y∈{0,...,C−1} exp(wT
y x)

torch.nn.functional.softmax(input , dim=None , _stacklevel =3, dtype=None)[source]

Loss Functions
• Mean squared error: ℓ(x, t;w) = (y − t)2

torch.nn.MSELoss(size_average=None , reduce=None , reduction='mean')

• Minimum log-likelihood: ℓ(x, t;w) =
∑

(x(i),t(i))∈D − log p(t|x)

– Combined with binary classification: ℓ(x, t;w) =
∑

(x(i),t(i))∈D log(1 + exp(−t(i)wT x(i)))

– Combined with softmax: ℓ(x, t;w) =
∑

(x(i),t(i))∈D

(
−wT

t(i)
x + log

∑
c∈{0,...,C−1} exp(wT

c x)
)

torch.nn.CrossEntropyLoss(weight=None , size_average=None , ignore_index =-100, reduce=None ,
reduction='mean', label_smoothing =0.0)[source]

• Cross Entropy Loss:

– Linear (SVM formulation): ℓ(x, t;w) =
|W [1:]|

2 + C
∑

max
(
0, 1− t(i) ·Wx(i)

)2

– Logistic: ℓ(x, t;w) = − t log y − (1− t) log
(
1− y

)

Optimizers and torch.optim

In standard gradient descent, the update rule is: wk+1 = wk − α∇f(wk). In gradient descent with momentum, we introduce a velocity term vk : vk+1 =
βvk − α∇f(wk) andwk+1 = wk + vk+1 where: α is the learning rate, β ∈ [0, 1] is the momentum coefficient, and vk is the velocity term.

The following are some useful optimizers provided by the torch.optim library including:

• Stochastic gradient descent

torch.optim.SGD(params , lr=0.001 , momentum=0, dampening=0, weight_decay =0, nesterov=False , *,
maximize=False , foreach=None , differentiable=False , fused=None)[source]

PyTorch datasets

Required functions for dataset class:

• __init__: The __init__method is the constructor for the new dataset.

• __len__: The __len__method overrides the len() function in Python to determine the length of the dataset.

• __getitem__: The __getitem__method overloads the use of brackets to index items in a dataset.

There are lots of cool dataloader attributes and methods including:

• batch_size: number of examples in each batch or call to the dataloader

• shuffle: Boolean option to shuffle dataset each pass or epoch through the dataset

• sampler: Sampler object that specifies how data will be extracted from the dataset. For example, the SubsetRandomSampler allows us to specify indices within
the larger dataset to sample at random.

Other useful equations

• Gradient descent: w ← w − α ∂E
∂w

• Closed form solution for linear regression: W = (XTX)−1XTT

• L2 Regularization with MSE: L(w) = ∥y −Xw∥2 + λ∥w∥22 , closed form linear regression solutions: W = (XTX + λId)
−1XT y

• Support Vector Machines - Margins atWX = 1 andWX = −1, border atWX = 0. Margin width= 2/|W |



Sample Code

Here is a sample, two-dimensional logistic classifier code:

import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data import SubsetRandomSampler

class LogisticRegression(nn.Module):
def __init__(self , N):

super ().__init__ ()
self.w = nn.Parameter(torch.ones(N))
self.b = nn.Parameter(torch.zeros (1))

def forward(self , x):
return 1/(1+ torch.exp(-(self.w@x+self.b)))

class TwoClassDataset(Dataset):
# don't forget the self identifier!
def __init__(self , N, sigma):

self.N = N # number of data points per class
self.sigma = sigma # standard deviation of each class cluster
self.plus_class = self.sigma*torch.randn(N, 2) + torch.tensor([-1, 1])
self.negative_class = self.sigma*torch.randn(N, 2) + torch.tensor ([1, -1])
self.data = torch.cat((self.plus_class , self.negative_class), dim=0)
self.labels = torch.cat((torch.ones(self.N), torch.zeros(self.N)))

def __len__(self):
return len(self.labels)

def __getitem__(self , idx):
x = self.data[idx]
y = self.labels[idx]
return x, y # return input and output pair

N = 100
sigma = 1.5
dataset = TwoClassDataset(N, sigma)
plus_data = dataset.plus_class
negative_data = dataset.negative_class

# create indices for each split of dataset
N_train = 60
N_val = 20
N_test = 20
indices = np.arange(len(dataset))
np.random.shuffle(indices)
train_indices = indices [: N_train]
val_indices = indices[N_train:N_train+N_val]
test_indices = indices[N_train+N_val:]

# create dataloader for each split
batch_size = 8
train_loader = DataLoader(dataset , batch_size=batch_size , sampler=SubsetRandomSampler(train_indices)

)
val_loader = DataLoader(dataset , batch_size=batch_size , sampler=SubsetRandomSampler(val_indices))
test_loader = DataLoader(dataset , batch_size=batch_size , sampler=SubsetRandomSampler(test_indices))

criterion = nn.BCELoss(reduction='mean') # binary cross -entropy loss , use mean loss
logreg_model = LogisticRegression (2) # initialize model
optimizer = torch.optim.SGD(logreg_model.parameters ()) # initialize optimizer

n_epoch = 200 # number of passes through the training dataset
loss_values , train_accuracies , val_accuracies = [], [], []
for n in range(n_epoch):

epoch_loss , epoch_acc = 0, 0
for x_batch , y_batch in train_loader:

optimizer.zero_grad ()
predictions = logreg_model(x_batch.unsqueeze (-1)).squeeze (-1)
loss = criterion(predictions , y_batch)
loss.backward ()
optimizer.step()


