
ECE 364: Programming Methods for Machine Learning,
Spring 2025

Midterm 2 – Sample

• You will have 75 minutes (1.25 hours) to solve all the problems. Most have
multiple parts. Don’t spend too much time on questions you don’t understand and focus
on answering as much as you can!

• BUDGET YOUR TIME WISELY . I highly recommend working on the questions you
know first and the questions you need to think about second.

• No resources are allowed for use during the exam except a cheatsheet and scratch paper on
the back of the exam. Do not tear out the cheatsheet or the scratch paper! It messes
with the auto-scanner.

• You should write your answers completely in the space given for the question. We will not
grade parts of any answer written outside of the designated space.

• Please use a dark-colored pen unless you are absolutely sure your pencil writing is forceful
enough to be legible when scanned. We reserve the right to deduct points if we have difficulty
reading the uploaded document.

• Don’t cheat. C’mon, be cool, be honest.

• Good luck!

Name:

NetID:

Date:

1. True/False (30 points)
For each question, circle whether the statement is true or false.

(a) TRUE False In PCA, the eigenvectors of the covariance matrix correspond to the
principal component directions, and the associated eigenvalues represent
the amount of variance explained along those directions.

(b) True FALSE The K-Means algorithm is guaranteed to find the globally optimal clus-
tering configuration for any dataset.

(c) TRUE False Mode collapse is a common challenge in the GAN training.

(d) True FALSE The different filters (or kernels) in a convolutional layer share weights to
reduce the number of parameters.

(e) TRUE False A goal of activation function is to introduce nonlinearity

(f) TRUE False The forget gate in LSTM decides what information to remove from the
cell state.

(g) True FALSE LSTM networks suffer from vanishing gradients more severely than stan-
dard RNNs.

(h) TRUE False Principal components are always orthogonal to each other.

(i) TRUE False The number of filters in a CNN layer determines the depth of the output
feature map.

(j) True FALSE PCA is a supervised learning technique used for dimension reduction.

(k) TRUE False Learned positional embeddings cannot generalize to sequence lengths
longer than those seen in training.

(l) True FALSE BERT is a left-to-right (unidirectional) language model.

(m) True FALSE SSD relies on max-pooling layers to generate its multi-scale feature maps
for detection.

(n) True FALSE In SSD, default boxes (anchors) are generated only at the final convolu-
tional feature map.

(o) True FALSE The sigmoid and tanh activation functions can be used interchangably
since they both have a “S”-curve shape.

Page 2

2. Debugging a Training Job (10 points)
You have been assigned to build a classification model to detect whether emails are spam or
not. After dedicating several days to the project, you have designed a promising model. But,
during training, you observe the following behavior in the training and validation losses:

(a) Which of the following is a possible issue with the training? Circle your answer.

Underfitting Overfitting Learning Rate No issue

Solution:

Learning Rate

(b) Justify your answer. If you chose any option other than “No issue”, suggest a possible
remedy to mitigate the issue. Use no more than four sentences in total for your answer.

Solution:

The loss fluctuates significantly during the initial epochs, which is not expected. The
issue may be caused by a higher learning rate than required. A possible remedy would be
to reduce the learning rate. If stochastic gradient descent is used for training, increasing
the batch size may also help.

Page 3

3. Neural Networks for Simple Functions (10 points)
In this problem, you will be hand designing a simple neural network to model a specific func-
tion. Assume x ∈ R and provide appropriate weights w0, w1 ∈ R2. In other words, the neural
network has one input neuron, 2 hidden neurons, and one output neuron.

Find w0, w1 ∈ R2 such that f(x) = wT
1 σ(w0x) = x,∀x ∈ R where σ = ReLU (note: w0x here is

a vector-scalar product: R2×R → R2, e.g. [0, 1]Tx = [0, x]T). Show why your answer is correct.

Solution:

In order to achieve this function, we can set w0 = [1,−1]T , w1 = [1,−1]T . We can see that
this works because applying our answer to our function, we get

f(x) = wT
1 σ(w0x) = [1,−1]T

T
σ([1,−1]Tx)

= [1,−1]σ([x,−x]T) =

[1,−1][x, 0]T = x , x > 0

[1,−1][0, 0]T = 0 , x = 0

[1,−1][0,−x]T = x , x < 0

⇒ f(x) = x, ∀x ∈ R

(ReLU: σ(x) = max(0, x)).

Page 4

4. K-means and GMM (10 points)

(a) For each figure below, indicate whether it is possible for K-Means, GMM, neither, or both
algorithms to produce the clustering assignments shown (as indicated by the two colors).
In 1–2 sentences, briefly explain your reasoning.

(a)

(b)

Solution:

(a) Neither

(b) GMM only

(b) Which algorithm (K-Means or GMM) typically has more parameters to learn for the same
number of clusters, and why?

Solution:

GMM, because for each cluster it estimates a mean, a covariance matrix (or variance in
1D), and a mixing coefficient. K-Means only estimates cluster centers.

(c) Which of the following expressions is used to compute cluster responsibilities in the E-step
of the EM algorithm for GMM?

A. argmin
k

|xi − µk|2

B.
πk,N (xi | µk,Σk)∑K
j=1 πj ,N (xi | µj ,Σj)

C.
K∑
k=1

|xi − µk|2

D.
n∑

i=1

|xi − x̄|2

Solution:

(b). The E-step computes the probability (responsibility) that each point belongs to each
component using Bayes’ rule.

Page 5

5. Attention is All You Need! (15 points)
The Transformer architecture integrates attention mechanisms with multi-layer perceptrons
(MLPs). The attention mechanism takes three inputs – queries (Q), keys (K), and values (V).
Each has a shape of B×N × dmodel. Here, B, N , and dmodel represent the batch size, sequence
length, and model dimension (or hidden size), respectively. Given h as the number of attention
heads, the following process is used to compute attention

Step 1. For each head i, we apply learned projection matrices as

Qi = QWQ
i ,Ki = KWK

i , Vi = VW V
i

where WQ
i ,WK

i ,W V
i ∈ Rdmodel×dh and dh = dmodel/h.

Step 2. For each head, attention is computed as follows

Ai = Attention(Qi,Ki, Vi) = softmax

(
QiK

T
i√

dh

)
Vi

Step 3. Concatenate the attention across heads and apply one more linear transform

MultiHeadAttention(Q,K, V) = concat(A1, A2 . . . Ah)W
O

where WO ∈ Rdmodel×dmodel .

Complete the code below to implement multi-head attention. Use the provided definitions as a
guide. For this question, you can ignore additional details such as attention masks, dropouts,
and optimized implementations.

1 # Even though you should not need to import anything else , feel

2 # free to do so.

3 import torch

4 import torch.nn as nn

5 from torch.nn.functional import softmax

6

7

8

9 class MultiHeadAttention(nn.Module):

10 def __init__(self , d_model: int , h: int) -> None:

11 assert d_model % h == 0, "d_model must be divisible by h"

12 self.d_model = d_model

13 self.h = h

14 self.d_head = self.d_model // self.h

15

16 # Combine h weight matrices of d_head into one

17 self.wq = nn.Linear(self.d_model , self.d_model , bias=False)

18 self.wk = nn.Linear(self.d_model , self.d_model , bias=False)

19 self.wv = nn.Linear(self.d_model , self.d_model , bias=False)

20 self.wo = nn.Linear(self.d_model , self.d_model , bias=False)

21

22 # Space to add more class variables as required

23

24

25

26

27

28

Page 6

29

30 def forward(self , Q: torch.Tensor , K: torch.Tensor , V: torch.Tensor) ->

torch.Tensor:

31 """

32 Inputs

33 ------

34 Q: B x N x d_model

35 K: B x N x d_model

36 V: B x N x d_model

37 """

38 # Complete this

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84 # Function end

Page 7

Solution:

1 # Even though you should not need to import anything else , feel

2 # free to do so.

3 import torch

4 import torch.nn as nn

5 from torch.nn.functional import softmax

6

7 class MultiHeadAttention(nn.Module):

8 def __init__(self , d_model: int , h: int) -> None:

9 assert d_model % h == 0, "d_model must be divisible by h"

10 self.d_model = d_model

11 self.h = h

12 self.d_head = self.d_model // self.h

13

14 # Combine h weight matrices of d_head into one

15 self.wq = nn.Linear(self.d_model , self.d_model , bias=False)

16 self.wk = nn.Linear(self.d_model , self.d_model , bias=False)

17 self.wv = nn.Linear(self.d_model , self.d_model , bias=False)

18 self.wo = nn.Linear(self.d_model , self.d_model , bias=False)

19

20 # Space to add more class variables as required

21 self.scaling = self.d_head ** -0.5

22

23 def forward(self , Q: torch.Tensor , K: torch.Tensor , V: torch.Tensor) ->

torch.Tensor:

24 """

25 Inputs

26 ------

27 Q: B x N x d_model

28 K: B x N x d_model

29 V: B x N x d_model

30 """

31 # Complete this

32 B, N, d_model = Q.size()

33 query_states = self.wq(Q) * self.scaling # B x N x d_model

34 key_states = self.wk(K) # B x N x d_model

35 val_states = self.wv(V) # B x N x d_model

36

37 query_states = query_states.view(B, N, self.h, self.d_head).transpose

(1, 2).contiguous () # B x h x N x d_head

38 key_states = key_states.view(B, N, self.h, self.d_head).transpose(1,

2).contiguous () # B x h x N x d_head

39 val_states = val_states.view(B, N, self.h, self.d_head).transpose(1,

2).contiguous () # B x h x N x d_head

40

41 query_states = query_states.view(-1, N, self.d_head) # B*h x N x

d_head

42 key_states = key_states.view(-1, N, self.d_head) # B*h x N x d_head

43 val_states = val_states.view(-1, N, self.d_head) # B*h x N x d_head

44

45 attn_weights = query_states @ key_states.transpose (1, 2) # B*h x N x N

46 attn_weights = softmax(attn_weights , dim=-1) # B*h x N X N

47

48 attn_outputs = attn_weights @ val_states # B*h x N x d_head

49 attn_outputs = attn_outputs.view(B, self.h, N, self.d_head) # B x h x

N x d_head

Page 8

50 attn_outputs = attn_outputs.transpose (1, 2) # B x N x h x d_head

51 attn_outputs = attn_outputs.reshape(B, N, d_model) # B x N x d_model

52 attn_outputs = self.wo(attn_outputs) # B x N x d_model

53

54 return attn_outputs

55 # Function end

Page 9

6. Output and Parameter Count (15 points)
Consider the following network:

model = nn.Sequential(

nn.Conv2d(1, 4, 3, padding=1),

nn.MaxPool2d(2,2),

nn.Conv2d(4, 8, 3, padding=1),

nn.MaxPool2d(2,2),

nn.Flatten(),

nn.Linear(8*7*7, 10)

)

(a) Suppose the input is (1, 1, 28, 28). What are the output shapes after each layer?

Solution:

After Conv1: (1, 4, 28, 28)
Pool1: (1, 4, 14, 14)
Conv2: (1, 8, 14, 14)
Pool2: (1, 8, 7, 7)
Flatten: (1, 392)
Linear: (1, 10)

(b) Determine the total learnable parameters in the model (including biases).

Solution:

Conv1: 4× 1× 3× 3 + 4 = 36 + 4 = 40
Conv2: 8× 4× 3× 3 + 8 = 288 + 8 = 296
Linear: 392× 10 + 10 = 3920 + 10 = 3930
Total: 40 + 296 + 3930 = 4266.

Page 10

7. Layer-Output Computation (10 points)
Consider the two-channel input

X1 =

1 2 3

4 5 6

7 8 9

 , X2 =

9 8 7

6 5 4

3 2 1

and depthwise kernels

K1 =

(
0 1

1 0

)
, K2 =

(
1 1

1 1

)
.

(a) Compute the two output feature-maps of
Conv2d(in channels=2,out channels=2,groups=2,kernel size=2) (bias=0).

Solution:

Channel 1:

(
6 8

12 14

)
, Channel 2:

(
28 24

16 12

)

Page 11

This page is for additional scratch work!

Page 12

