
ECE 364: Programming Methods for Machine Learning,
Spring 2025

Midterm 2 – May 01, 2025

• You will have 75 minutes (1.25 hours) to solve all the problems. Most have
multiple parts. Don’t spend too much time on questions you don’t understand and focus
on answering as much as you can!

• BUDGET YOUR TIME WISELY . I highly recommend working on the questions you
know first and the questions you need to think about second.

• No resources are allowed for use during the exam except a cheatsheet and scratch paper on
the back of the exam. Do not tear out the cheatsheet or the scratch paper! It messes
with the auto-scanner.

• You should write your answers completely in the space given for the question. We will not
grade part

s of any answer written outside of the designated space.

• Please use a dark-colored pen unless you are absolutely sure your pencil writing is forceful
enough to be legible when scanned. We reserve the right to take off points if we have difficulty
reading the uploaded document.

• Don’t cheat. C’mon, be cool, be honest.

• Good luck!

Name:

NetID:

Date:

1. Fact or Cap? (30 points)
For each question, circle whether the statement is true or false.

(a) True FALSE The first principal component captures the lowest variance of the dataset.

(b) True FALSE In each iteration of K-Means, centroids are updated by moving them
toward the point with the smallest distance in their cluster.

(c) True FALSE In a convolutional layer, each weight (or parameter) is used exactly once
while computing the output of the layer.

(d) TRUE False A strong discriminator too early in GAN training would make it difficult
for the generator to improve.

(e) TRUE False The sigmoid activation function can cause vanishing gradients in deep
networks.

(f) True FALSE The derivative of ReLU is always 1.

(g) TRUE False Standard RNNs are designed to handle sequential data by maintaining
a hidden state across time steps.

(h) True FALSE LSTMs suffer more from the vanishing gradient problem than standard
RNNs do.

(i) TRUE False Self-attention compares every token to every other token in the sequence

(j) True FALSE A convolutional layer applies different kernels (filters) to different regions
of the input.

(k) TRUE False Masked language modeling is used to pre-train BERT by randomly mask-
ing input tokens.

(l) TRUE False In decoder self-attention, a causal mask prevents tokens from attending
to future positions.

(m) TRUE False Decoder-only transformer models have no cross-attention mechanism.

(n) True FALSE Single shot multibox detection uses the same default-box scale for every
feature map level.

(o) TRUE False In deep NNs, having multiple linear layers back to back without an
activation function in between is mathematically no different than having
one linear layer.

Page 2

2. It Trained All Night and Still Flopped (10 points)
In your machine learning course, you have been assigned to build a classification model to
detect whether emails are spam or not. After dedicating several days to the project, you have
designed a promising model. But, during training, you observe the following behavior in the
training and validation losses:

(a) You know your classmates have been able to achieve lower losses than what you have
plateaued at. Which of the following is a possible issue with the training? Circle your
answer.

Underfitting Overfitting No issue

Solution:

Underfitting

(b) Justify your answer. If you selected “Underfitting” or “Overfitting”, suggest a possible
remedy to mitigate the issue. Use no more than four sentences in total for your answer.

Solution:

Both training and validation losses converge to a high value. This suggests underfitting.
The model is not complex enough for the task. A possible remedy would be to increase
the number of parameters in the model. Replacing linear activation functions with non-
linear ones would also help.

Page 3

3. Life’s a Pool, Dive In (10 points)
Consider the 5× 5 input 

0 1 2 3 4

4 3 2 1 0

1 2 3 4 5

5 4 3 2 1

0 1 0 1 0

 .

Compute the output of MaxPool2d(3, stride=2).

Solution:(
4 5

5 5

)
.

Page 4

4. Who Wants to Be a Parameterionaire? (10 points)
Consider the following network:

model = nn.Sequential(

nn.Linear(8, 16, bias=True),

nn.ReLU(),

nn.Linear(16, 4, bias=True)

)

(a) Suppose the input is of shape (1, 8). What are the shapes after the first Linear, after
ReLU, and after the second Linear?

Solution:

After the first Linear: (1, 16)
ReLU: (1, 16)
the second Linear: (1, 4)

(b) Determine the total learnable parameters in the model.

Solution:

First linear layer: 8× 16 + 16 = 144
Second linear layer: 16× 4 + 4 = 68
Total: 144 + 68 = 212 parameters

Page 5

5. Layer by Layer: A Neural Network Love Story (10 points)
In this problem, you will be hand designing a simple neural network to model a specific func-
tion. Assume x ∈ R and provide appropriate weights w0, w1, b0 ∈ R2. In other words, the
neural network has one input neuron, 2 hidden neurons, and one output neuron.

Find w0, w1, b0 ∈ R2 such that f(x) = wT
1 σ(w0x + b0) = mx + b,∀x ∈ R where σ = ReLU

(note: w0x here is a vector-scalar product: R2 × R → R2, e.g. [0, 1]Tx = [0, x]T). Show why
your answer is correct.

Solution:

Note multiple solutions may exist. In order to achieve this function, we can set w0 =
[m,−m]T , w1 = [1,−1]T , b0 = [b,−b]T . We can see that this works because applying our
answer to our function, we get

f(x) = wT
1 σ(w0x+ b0) = [1,−1]T

T
σ([m,−m]Tx+ [b,−b]T) = [1,−1]σ([mx+ b,−mx− b]T)

= [1,−1]σ([mx+ b,−(mx+ b)]T) =


[1,−1][mx+ b, 0]T = mx+ b ,mx+ b > 0

[1,−1][0, 0]T = 0 ,mx+ b = 0

[1,−1][0,−mx− b]T = mx+ b ,mx+ b < 0

⇒ f(x) = mx+ b,∀x ∈ R

(ReLU: σ(x) = max(0, x)).

Page 6

6. Two Clusters Walk Into a Bar. . . (15 points)

(a) For each figure below, indicate whether it is possible for K-Means, GMM, neither, or both
algorithms to produce the clustering assignments shown (as indicated by the two colors
which are there for visualization purposes only). In 1–2 sentences, briefly explain your
reasoning.

(a)

(b)

Solution:

(a) Both

(b) Neither

(b) Which algorithm is more sensitive to outliers: K-Means or GMM? Explain.

Solution:

K-Means is more sensitive because it uses means, which shift due to outliers. GMM
can be more robust if the outlier is far enough to get very low probability under all
components.

Page 7

(c) Which of the following is not minimized (or maximized) by K-Means or GMM?

A.

n∑
i=1

min
k

∥xi − µk∥2

B. −
n∑

i=1

log
(K∑
k=1

πk N (xi | µk,Σk)
)

C.
n∑

i=1

min
k

∥xi − µk∥

D.
n∑

i=1

K∑
k=1

γik ∥xi − µk∥2

Solution:

(c). K-Means uses squared distances, and GMM optimizes a likelihood, neither optimizes
the sum of unsquared distances.

Page 8

7. Attention is All You Need! (15 points)
The Transformer architecture integrates attention mechanisms with multi-layer perceptrons
(MLPs). The attention mechanism takes three inputs – queries (Q), keys (K), and values
(V). Each has a shape of B × N × dmodel. Here, B, N , and dmodel represent the batch size,
sequence length, and model dimension (or hidden size), respectively. In this question, you will
implement a simple attention mechanism without using multiple heads. The attention outputs
are computed as follows.

Step 1. We first apply learned projection matrices as

Qw = QWQ + bQ,Kw = KWK + bK , Vw = VW V + bV

where WQ,WK ,W V ∈ Rdmodel×dmodel and bQ, bK , bV ∈ Rdmodel .

Step 2. The attention outputs are computed as

A = softmax

(
QwK

T
w√

dmodel

)
Vw

Step 3. Apply another linear projection on A

Attention(Q,K,W) = AWO + bO

where WO ∈ Rdmodel×dmodel and b ∈ Rdmodel .

Complete the code below to implement attention. Use the provided definitions as a guide. For
this question, you can ignore additional details such as attention masks, multi-head attention,
dropouts, and optimized implementations.

1 # Even though you should not need to import anything else , feel

2 # free to do so.

3 import torch

4 import torch.nn as nn

5 from torch.nn.functional import softmax

6

7

8

9

10

11 class Attention(nn.Module):

12 def __init__(self , d_model: int) -> None:

13 self.d_model = d_model

14 # Space to add more class variables as required

15

16

17

18

19

20

21

22

23

24

25

26

27

Page 9

28 def forward(self , Q: torch.Tensor , K: torch.Tensor , V: torch.Tensor) ->

torch.Tensor:

29 """

30 Inputs

31 ------

32 Q: B x N x d_model

33 K: B x N x d_model

34 V: B x N x d_model

35 """

36 # Complete this

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82 # Function end

Page 10

Solution:

1 # Even though you should not need to import anything else , feel

2 # free to do so.

3 import torch

4 import torch.nn as nn

5 from torch.nn.functional import softmax

6

7 class Attention(nn.Module):

8 def __init__(self , d_model: int) -> None:

9 self.d_model = d_model

10

11 # Space to add more class variables as required

12 self.wq = nn.Linear(self.d_model , self.d_model , bias=True)

13 self.wk = nn.Linear(self.d_model , self.d_model , bias=True)

14 self.wv = nn.Linear(self.d_model , self.d_model , bias=True)

15 self.wo = nn.Linear(self.d_model , self.d_model , bias=True)

16 self.scaling = self.d_model ** -0.5

17

18 def forward(self , Q: torch.Tensor , K: torch.Tensor , V: torch.Tensor) ->

torch.Tensor:

19 """

20 Inputs

21 ------

22 Q: B x N x d_model

23 K: B x N x d_model

24 V: B x N x d_model

25 """

26 # Complete this

27 B, N, d_model = Q.size()

28 query_states = self.wq(Q) * self.scaling # B x N x d_model

29 key_states = self.wk(K) # B x N x d_model

30 val_states = self.wv(V) # B x N x d_model

31

32 attn_weights = query_states @ key_states.transpose (1, 2) # B x N x N

33 attn_weights = softmax(attn_weights , dim=-1) # B x N X N

34

35 attn_outputs = attn_weights @ value_states # B x N x d_model

36 attn_outputs = self.wo(attn_outputs) # B x N x d_model

37

38 return attn_outputs

39 # Function end

Page 11

This page is for additional scratch work!

Page 12

This page is for additional scratch work!

Page 13

Deep Learning Cheatsheet

torch.nn Functions
• Linear function: y = WX + b whereW andX are vectors of sizeN (number of dimensions to the input).

torch.nn.Linear(in_features , out_features , bias=True , device=None , dtype=None)

• Sigmoid function: 1

1+e−z where z is the logit(s).

torch.nn.functional.sigmoid(input)

• Softmax function: p(Y = t|x) =
exp(wT

t x)
∑

y∈{0,...,C−1} exp(wT
y x)

torch.nn.functional.softmax(input , dim=None , _stacklevel =3, dtype=None)

torch.nn Layers

• Linear layer: y = WX + b whereW andX are vectors of sizeN (number of dimensions to the input).

torch.nn.Linear(in_features , out_features , bias=True , device=None , dtype=None)

• Convolutional layer: In the simplest case, assuming a input size of (N,Cin, H,W), the output is sized(N,Cout, Hout,Wout)whereN is a batch size,C denotes
a number of channels,H is a height of input planes in pixels, andW is width in pixels.

torch.nn.Conv2d(in_channels , out_channels , kernel_size , stride=1, padding=0, dilation=1, groups=1,
bias=True , padding_mode='zeros ', device=None , dtype=None)

(1d/2d/3d variations available as well)

• Pooling layer: Applies a #D (1d/2d/3d variations available) pooling over an input signal composed of several input planes. There are two flavors

torch.nn.MaxPool2d(kernel_size , stride=None , padding=0, dilation=1, return_indices=False , ceil_mode
=False)

torch.nn.AvgPool2d(kernel_size , stride=None , padding=0, ceil_mode=False , count_include_pad=True ,
divisor_override=None)

• BatchNorm layer: normalizes the data over a batch using the formula y =
x−E[x]√
Var[x]+ϵ

∗ γ + β where γ and β are trainable parameters:

torch.nn.BatchNorm2d(num_features , eps=1e-05, momentum =0.1, affine=True , track_running_stats=True ,
device=None , dtype=None)

Principal Component Analysis

Steps to calculate principal components:

• Subtract means and calculate covariance matrix: Σ = 1
N

∑N
n=1 x(n)

(
x(n)

)T = 1
N XTX

• Find theD eigenvectors with the largest eigenvalues:

eigenvalues , eigenvectors = np.linalg.eig(cov_matrix)
Use torch.pca_lowrank to compute the top 2 principal components
U, S, V = torch.pca_lowrank(X, q=2)
Project the data onto the principal components
X_pca = X @ V

K-means clustering

Steps to calculate k-means clusters. First, we got to choose howmany (K) clusters we want to break the data up into. Randomly assign data points into clusters.

• Update centroid of clusters based on current data point assignment.

• Update datapoint assignment based off cluster centroids.

Loss function: J (C1, . . . , Ck, µ1, . . . , µk) = ΣK
k=1Σi∈Ck

||x(i) − µk||2

Gaussian mixture models
Model the data set as a combination of Gaussian curves: p(x) =

∑K
k=1 πk N (x | µk,Σk) where N (x | µk,Σk): Gaussian density for the k-th component,

N (x | µk,Σk): Gaussian density for the k-th component, andK : total number of components.

• Expectation step: compute the "responsibilities" or the posterior probabilities that a data point x(i) belongs to each Gaussian component k: γ(z(i)
k) =

πk N(x(i)|µk,Σk)
∑K

j=1
πj N(x(i)|µj,Σj)

• Maximization step: parameters of the GMM (i.e., the mixing coefficients, means, and covariances) are updated to maximize the expected complete-data log-

likelihood (
∑N

i=1 log
(∑K

k=1 πk N (x(i) | µk,Σk)
)
) computed during the E-Step.

– Update mixing coefficient: πk = 1
N

∑N
i=1 γ(z

(i)
k)

– Update means: µk =
∑N

i=1 γ(z
(i)
k

) x(i)

∑N
i=1

γ(z
(i)
k

)

– Update covariance matrices: Σk =
∑N

i=1 γ(z
(i)
k

) (x(i)−µk)(x(i)−µk)⊤
∑N

i=1
γ(z

(i)
k

)

Generative adversarial networks
Assume a generator (Gθ(z)) and discriminator (Dw(x) = p (y = 1|x)). The loss function for the discriminator is: JD = −Σx logDw(x) −
Σz log (1 − Dw(Gθ(z))).
For the generator, we have the formulation: JG = −JD = const + Σz log (1 − Dw(Gθ(z))), but the question is how to optimize:

• min-max formulation: maxθ minw −Σx logDw(x) − Σz log (1 − Dw(Gθ(z)))

• non-saturating formulation: minθ −Σz log (Dw(Gθ(z)))

Image processing

• For bounding box problems, we optimize intersection over union.

• Let xp
ij ∈ {0, 1} be an indicator of matching default box i to ground-truth box j from class p, c be the class of the bounding box, l be the predicted bounding

box, g be the ground-truth bounding box, and d be the matched default box. The loss function L is given as L(x, c, l, g) = 1
N (Lcls(x, c) + αLloc(x, l, g)) ,

whereN is the number of matched default boxes for the given image

Accuracy measures:

• Precision = TP
TP+FP ∈ [0, 1], Recall = TP

TP+FN ∈ [0, 1]

• Average precision (AP) is area under precision recall curve.

• mAP score isAP at multiple IoU thresholds.

Transformer model
Position encoding:

• PE0
(pos,2i) = sin

(
pos

100002i/dmodel

)

• PE1
(pos,2i+1) = cos

(
pos

100002i/dmodel

)

where pos is the position in the sequence, i is the embedding dimension index is the dmodel
= total embedding size (e.g., 512) Attention types:

• SelfAttention(Qencoder, Kencoder, Vencoder) = softmax
(

QK⊤√
dk

)
V

• CrossAttention(Qdecoder, Kencoder, Vencoder) == softmax
(

QK⊤√
dk

)
V

• MaskedAttention(Q,K, V) = softmax
(

QK⊤+M√
dk

)
V whereM is a mask of−∞ val-

ues.

Attention heads are calculated by: headi = Attention(QWQ
i , KWK

i , V WV
i) and

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O

Sample Code - Logistic classification

Here is a sample, two-dimensional logistic classifier code:

import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data import SubsetRandomSampler

class LogisticRegression(nn.Module):
def __init__(self , N):

super ().__init__ ()
self.w = nn.Parameter(torch.ones(N))
self.b = nn.Parameter(torch.zeros (1))

def forward(self , x):
return 1/(1+ torch.exp(-(self.w@x+self.b)))

class TwoClassDataset(Dataset):
don't forget the self identifier!
def __init__(self , N, sigma):

self.N = N # number of data points per class
self.sigma = sigma # standard deviation of each class cluster
self.plus_class = self.sigma*torch.randn(N, 2) + torch.tensor([-1, 1])
self.negative_class = self.sigma*torch.randn(N, 2) + torch.tensor ([1, -1])
self.data = torch.cat((self.plus_class , self.negative_class), dim=0)
self.labels = torch.cat((torch.ones(self.N), torch.zeros(self.N)))

def __len__(self):
return len(self.labels)

def __getitem__(self , idx):
x = self.data[idx]
y = self.labels[idx]
return x, y # return input and output pair

N = 100
sigma = 1.5
dataset = TwoClassDataset(N, sigma)
plus_data = dataset.plus_class
negative_data = dataset.negative_class

create indices for each split of dataset
N_train = 60
N_val = 20
N_test = 20
indices = np.arange(len(dataset))
np.random.shuffle(indices)
train_indices = indices [: N_train]
val_indices = indices[N_train:N_train+N_val]
test_indices = indices[N_train+N_val:]

create dataloader for each split
batch_size = 8
train_loader = DataLoader(dataset , batch_size=batch_size , sampler=SubsetRandomSampler(train_indices)

)
val_loader = DataLoader(dataset , batch_size=batch_size , sampler=SubsetRandomSampler(val_indices))
test_loader = DataLoader(dataset , batch_size=batch_size , sampler=SubsetRandomSampler(test_indices))

criterion = nn.BCELoss(reduction='mean') # binary cross -entropy loss , use mean loss
logreg_model = LogisticRegression (2) # initialize model
optimizer = torch.optim.SGD(logreg_model.parameters ()) # initialize optimizer

n_epoch = 200 # number of passes through the training dataset
loss_values , train_accuracies , val_accuracies = [], [], []
for n in range(n_epoch):

epoch_loss , epoch_acc = 0, 0
for x_batch , y_batch in train_loader:

optimizer.zero_grad ()
predictions = logreg_model(x_batch.unsqueeze (-1)).squeeze (-1)
loss = criterion(predictions , y_batch)
loss.backward ()
optimizer.step()

Sample Code - Linear network

Here is a sample, linear torch.nn network model:

class ThreeLayerMLP(nn.Module):
def __init__(self , input_dim , h1 , h2 , output_dim , activation_fn):

super ().__init__ ()
self.fc1 = nn.Linear(input_dim , h1) # first fully -connected layer
self.fc2 = nn.Linear(h1, h2) # second fully -connected layer
self.fc3 = nn.Linear(h2, output_dim) # output layer
self.activation = activation_fn

def forward(self , x):
x = self.activation(self.fc1(x)) # first layer
x = self.activation(self.fc2(x)) # second layer
z = self.fc3(x) # output layer
return z

Sample Code - convolutional neural network

Here is a sample, linear torch.nn network model:

class MyCNNModel(nn.Module):
def __init__(self):

super ().__init__ ()
self.conv1 = nn.Conv2d(1, 32, kernel_size =3, stride=1, padding=1, bias=False)
self.conv2 = nn.Conv2d (32, 64, kernel_size =3, stride=1, padding=1, bias=False)
self.conv3 = nn.Conv2d (64, 128, kernel_size =3, stride=1, padding=1, bias=False)
self.pooling = nn.MaxPool2d(stride=2, kernel_size =2)
self.gap = nn.AdaptiveAvgPool2d ((1, 1))
self.activation = nn.ReLU()
self.fc = nn.Linear (128, 10)

def forward(self , x):
B = x.size (0)
x = self.activation(self.conv1(x))
x = self.pooling(x)
x = self.activation(self.conv2(x))
x = self.pooling(x)
x = self.activation(self.conv3(x))
x = self.gap(x).view(B, -1)
z = self.fc(x)
return z

